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1. Introduction

Metallic fragments occasionally are found imbedded in combustible cartridge cases as
a result of manufacturing anomalies. During the interior-ballistic cycle, these particles are
released into the interior flow field as the case is consumed. Components of the propelling
charge, such as igniters, may also be a source of metallic fragments during normal
functioning. A concern of system designers is that these fragments may not be ejected from
the gun or vaporized and pose an ignition threat either to subsequently loaded cases or to
fuel-rich combustion gases mixing with air upon opening of the breech. This report is a first
effort to quantify the temperature history of such particles in a 120 mm tank cannon as a
function of their mass, shape, composition, and initial location. It should be noted that,
while the fragment temperature history is prerequisite to establishing the seriousness of the
ignition threat for a given set of circumstances, experiments to establish the ignitibility of
combustible case material or combustion gases are required to complete the assessment.

The objective of the work documented in this report was to formulate the problem
mathematically and to solve it using a level of approximation expedient to gaining an
appreciation of the various factors involved, given a one-month time constraint. The analysis
shows that the fragment temperature is critically dependent upon the description of the
particle drag, which for a tumbling wafer-like geometry is difficult to assess. This uncertainty
is handled by computing upper and lower bounds on the drag and determining how these
bounds map into the solution for the temperature history. Analytical approximations to the
equations are utilized, and no doubt the temperature histories could be improved by solving
the equations numerically. It is believed, however, that the uncertainties in the particle drag
overshadow inaccuracies introduced by the mathematical approximations.

2. Basic Assumptions

1. Fragments are thin wafers such that the surface area associated with their edges is
negligible compared with that of their faces. This geometry is expected and simplifies the
mathematics but the assumption could readily be removed if desired. In addition, the
fragments are assumed to be square wafers for convenience.

2. The particles are not in thermal contact with the gun-tube wall. Presumably, a small
fragment would be kept in motion by turbulence and would experience only brief and
occasional contact with the wall.

3. Time for intra-fragment thermal relaxation is short compared to the rate of heat transfer
to the fragment (due to the high thermal diffusivity of metal); therefore, no temperature
gradients exist in the fragment.

4. Radiation heat transfer between the gas and the particles is negligible. (This is shown to
be a valid approximation.)
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5. The interior-ballistic flow is adequately characterized by the IBHVG2 code. Since the
time interval of interest is after flamespreading is complete, this lumped-parameter code
should give a reasonable first-order description of the flow. An assumption which is
uncertain, however, is that the case burns uniformly along its length. Erosive effects could
increase the rate of surface regression at the case mouth (i.e., projectile end of case),
however, tests with inert cases show no such preferential erosion.. On the other hand, the
pressure, which in the code is independent of distance, in reality is higher at the breech and
this fact tends to increase the rate of burning at the breech. To some unknown extent, these
effects compensate for each other.

6. Combustion of the fragments is not considered. Presumably, combustion would increase
the rate of consumption and heating of the particle, so that here an upper bound to the
survival time of the fragment is computed.

3. Conservation Equation Governing the Fragment Temperature

If r is the time after injection of the fragment into the flow, (other symbols are identified in
the List of Symbols)

pVc dT = Ah(T -(+eoA(7)-T')
dxr

Neglecting radiation heat transfer (for the moment), and assuming TV is constant,

pVc-- =Ah(Td-7) (2)
d~r

Changing variables to E = Tgf - T and considering h constant,

dO A Ah 2h (3)
d-r p Vc pdc

Assuming T = To at r = 0 (To = 300 K throughout this report.)
2hI
2h (4)

Te-T = (Tg-T)e Pdc
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__ (5)
T ) = Td-(T-TO)e pd

This equation will govern the temperature rise of the fragment up to the melting point,
requiring a time Ar 1 given by

-- d -T (6)
2h Ts r-rTm

at the end of which time the temperature will remain constant until the heat of fusion is
delivered to the fragment. This requires a period of time Arm given by

ATM = pdA Hf,.,o0  (7)
2h(Te-T,')

When melting is complete, the melted mass (assuming it remains intact, has the same shape,
density, and heat capacity) resumes its temperature rise according to

- , (8)

for a time interval Ar 2 given by

A C2 = PdcIn( T - T ) (9)

When the boiling point is reached, the temperature of the molten fragment again remains
constant for a time Arvap until the heat of vaporization is delivered.

pdAH.p (10)2h(rTg)

At the end of this period the fragment is completely vaporized.

4. Rate of Heat Transfer to the Fragment

The heart of the fragment heating problem is in the computation of the heat transfer
coefficient. This necessitates an empirical correlation function, given in the next section, and
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a calculation of the relative velocity between the accelerating fragment ana the gas flow,
which is itself a function of time and position.

4.1 Heat Transfer Coefficients

Case 1: Static Gas
Melvin1 determined a heat transfer coefficient for a metal sphere in a static gas. For a
sphere of radius a

h(11)
a

Defining an equivalent radius of the fragment wafer as the radius of a sphere of same
surface area as the fragment,

a A (12)
4,x

Case 2: Moving Gas
The heat transfer coefficient used in the NOVA interior-ballistic code is due to Gelperin and
Ainstein 2. This correlation is for spheres. Its use for non-spherical particles of equivalent
area, though common, has not been tested.

Nu = 1 +0.2Re 0 67pr° 33  (13)

where

Nu = ah (14)

Re = 2p va (15)

where v is the velocity of the flow relative to the fragment.

Pr c;__...1(16)

Eqs. 13 and 14 reduce to Eq. 11 in the limit of zero flow velocity.
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4.2 Computation of Flow Conditions at the Fragment

The fragment location in the cartridge case most likely to result in the fragment': survival
is the outside surface of the case in contact with the chamber wall. All calculations will be
based on this radial location though different axial locations will be considered. Thus the
fragment is considered to be "injected" into the interior-ballistic flow at the time of burnout
of the combustible case. In order to compute the temperature history of the fragment, one
must estimate the velocity of the combustion gases relative to that of the fragment, (vf - vf).
In order to determine this velocity, one must compute the trajectory of the fragment along
the flow streamline. This calculation proceeds as follows. (Fig. 1 may be helpful in
visualizing the variables at the time of injection, ti . and at the time of projectile exit, t..)

4.3 Equation of Motion of the Fragment

The velocity of the fragment, vf, with mass m is obtained by solving its equation of motion:

m dV = CD 1 pg(Vgtf _V)2 As (17)

where CD is the drag coefficient of the fragment, pg(vgf -vf)2/2 is the free-stream dynamic
pressure on the fragment, and A s is the sectional fragment area presented to the flow. For
constant vgf the fragment equation of motion can be solved analytically to give

v _() - _ _ (18)
1 +I3VgfZ

where ,dis defined by

CDPgAS (19)
~2m

Note that CD has been assumed constant in Eq. 17 but that it often is a function of the
Reynolds number, particularly at the transition from laminar to turbulent flow. The
maximum drag on the fragment occurs when the normal to the fragment surface is oriented
in the direction of the flow. The value of the drag coefficient under this condition is
approximately 1. In orientations where the surface normal is perpendicular to the flow, the
drag will assume a very low value due to the small edge area presented. One could average
the drag over all possible orientations under the assumption that the particle is tumbling;
however, for purposes of this limited analysis, it is deemed preferable to compute bounds
on the behavior to avoid making unwarranted assumptions. The maximum value of ,8 is
therefore computed using a CD = 1 and A, = s2, whereas the minimum value ofgfassumes
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CD = 1 and As = sd. Although the minimum value of CD would be less than 1, the very
small edge area should provide an effective lower bound on fl.

Integrating vf from Eq. 18 over r, one gets for the position of the fragment xf

= XIrV= In(l1 .i.3vt) (20)

The approximation that vgf is constant in the fragment equation of motion will now be
examined. The velocity of the combustion gases (more precisely, the two-phase combusting
fluid), vg, at any time and position behind the projectile is given by

xp~t)= (21)
L( + )(t)

where x is the distance from the breech block, vp(t) is the projectile velocity at time t, L c is
the length of the chamber, and $p,(t) is the distance traveled by the projectile at time t. This
linear velocity profile is consistent with the assumptions of the computer code 3 (IBHVG2)
used to characterize the interior ballistic conditions. The time r is referenced to the time
of combustible-case burnout, i.e., the fragment is injected at r = 0, or ti. The motion of a
fluid particle originating at the position xi and time of injection, is obtained by integrating
Eq. 21 as follows:

fdx = f vVr'+t) dtc' (22)

X1 X 0 Lc+ Ar'+ti

The integrand on the right side of this equation is shown in Fig. 2 plotted as a function of
gun time t. Case burnout occurs at ti = 3.85 ms, so the integrand is well approximated as
a linear function for times longer than 3.85 ms. Thus, for r > 0, based on a simple two-
point fit,

Vp = 587-1.12x105 r (s-1) (23)
Lc+ p

Using Eq. 23 in Eq. 22, the position of the fluid particle at time r is given by

xg(-c) = x~e 587T -5.6 1 4 2  (24)
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Eqs. 18 and 20 were derived on the assumption of constant vg; We now discuss how to
choose a suitable value for purposes of this analysis. Since, at a given time, the gas velocity
is a linear function of position, a lower bound on the velocity of the gas in contact with the
fragment can be found by using xi in Eq. 21. Since the fragment can never completely catch
up with the fluid particle which passes it at the instant of injection, an upper limit on vg can
be constructed by using Eq. 24 in Eq. 21. Thus, upper and lower bounds on vg, as a function
of time can be readily computed and are shown in Figs. 3 - 5 for three axial injection
positions. The heat transfer to the fragment is very sensitive to injection position near the
breech face because IBHVG2 assumes that the velocity is zero at the breech wall. In reality
even minor turbulence will sweep the fragment from the breech wall. To reflect this
behavior, we have arbitrarily taken 1 cm as the minimum distance from the breech to be
considered here. Calculations assuming that v is constant at the injection value vg, i.e.,
V at xi and r = 0, can be used to calculate (using Eq. 20) xf at projectile exit time, r, , and
this distance can in turn be used in Eq. 21 to estimate vg at projectile exit time. We label
this value, vg, , and print out the value for every run. rn the cases thus far examined vge
is within 30 % of ve in almost all cases and always within 37 %. The accuracy of the
computations could, of course, be improved by numerically integrating the coupled, non-
linear differential equations describing the system, but in our judgement this error is by far
overshadowed by the uncertainty in the drag on the fragment.

4.4 Bounds on the Heat Transfer

In order to compute the heat transfer from the flow to the fragment after injection, the
velocity of the gas in contact with the fragment relative to the velocity of the fragment is
required, i.e., v in Eq. 15, where

V - v -vf (25)

We will compute the average value of v in the interval (O,re) as follows:

Ef T

<V> = - =- fv dr--fv dr
T£0 (26)

<> =" (r.) (27)

vgr in Eq. 26 is taken as vg to be consistent with the assumptions of the fragment-trajectory
calculation. In those cases where vVj increases appreciably over the time interval (0,r) vf
should also increase, tending to minimize changes in v.

9
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Since the derivations of Eqs. 5 - 10 assumed constant Tg. , we may maximize the heat
transfer by choosing as T the maximum value of the flow temperature Tg in the interval (0,
rc), using the minimum rag constant,9 for xf in Eq. 20. Similarly, the minimum value of Tg
may be used for Tgf-, coupled with the maximum , to obtain the minimum heat transfer.
The arithmetic average of these two extreme temperatures is used in conjunction with the
arithmetic average value of g in the "average" temperature histories shown in the figures.
It should be pointed out that use of the average relative velocity in Eq. 26, in a strict sense,
invalidates the temperature history details computed by Eq. 2. In reality, the relative
velocity at early times is much higher than <v> and at late times much lower. However,
the computed value of fragment temperature at projectile exit time should be valid, since
the <v.> in Eq. 27 is the average value which properly takes into account the non-inear
time dependence of vf given by Eq. 18.

5. Radiative Heat Transfer vs. Convective Heat Transfer

Radiative heat transfer can be shown to be negligible compared to that by convection by
examining the case of minimum convective transfer, i.e., at an injection position near the
breech. In Fig. 6 the fragment thermal history determined by Eq. 2 is used to compute the
relative magnitude of these two heat transfer mechanisms. The radiative transfer is dwarfed
by convection even under the minimum convection conditions. This justifies Eq. 2 as an
excellent approximation.

6. Results and Discussion

All of the results thus far computed pertain to the M829 round. Figs. 7 - 12 show the
temperature histories of a square fragment 0.3 cm on a side by 0.03 cm thick. Figs. 7 and
8 assume the fragment (aluminum and steel, respectively) is located initially at the case
mouth. Figs. 9 and 10 assume the fragment is initially at the midlength of the case, and Figs.
11 and 12 take the initial fragment location as 1 cm from the breech wall. Clearly, the
assumptions relating to the drag on the fragment have a very strong effect on the computed
results, particularly at the case mouth. If the drag is high, then the fragment quickly
accommodates to the velocity of the flow and the convective heat transfer is minimized. The
volumetric heat capacity of steel is about 28 % higher than aluminum over the temperature
range considered. Therefore, for equal heating rates the temperature of the steel is lower
than that of the aluminum. However, the mass of the steel fragment is higher, leading to
a lower acceleration, and therefore higher relative velocity between the fragment and the
flow. This tends to increase the heat transfer to the steel fragment, in opposition to the
heat-capacity effect. For the most part, the increased heat-transfer effect dominates, leading
to higher temperatures for the steel fragment. Exceptions to this pattern are often found
near the breech, however (e.g., Figs. 11 and 12). Here the fragment velocity is a small

13
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fraction of the flow velocity for both aluminum and steel, minimizing the heat transfer effect
and emphasizing the heat-capacity effect.

The effect of both increasing and decreasing the fragment side dimension by a factor of 2
is shown in Figs. 13 - 20. In general, the highest fragment temperatures are associated with
case-mouth origins, but these fragments also achieve the highest forward velocities and
therefore are likely to leave the gun tube after shot ejection. It is interesting to note,
however, that in this series of runs the fragment position at the time of projectile exit never
reaches more than 25 % of the combined barrel/chamber length (531 cm) because of the
late time of injection during the IB cycle.

Decreasing the thickness of the 0.3 cm side fragment to 0.02 cm changes the thermal
histories as shown in Figs. 21 - 26.

A set of fragment dimensions resulting in complete vaporization is found in Fig. 27. The
fragment thickness here is 0.0025 cm (0.001 in.) and its side dimension is 0.05 cm (0.02 in.).
This size is very close to the threshold of complete vaporization. (The dotted line ends at
the time of complete conversion to vapor.) It clearly takes a relatively long time to supply
the large (2720 cal/g) heat of vaporization. Under "average" assumptions in this same figure,
the fragment has not quite begun to vaporize. Under the same conditions, a steel fragment
(Fig. 28) stabilizes at the maximum flow temperatures in the molten state. Figs. 29 and 30
show the same size fragment originating near the breech. Note that velocities of these
fragments, both aluminum and steel, are low but their temperatures are quite high and
therefore may pose a serious ignition threat.

7. Conclusions

The problem of a metallic fragment, trapped in a combustible cartridge case, and heated by
the combustion gases during the interior-ballistic cycle has been posed mathematically in this
report. In order to compute the convective heat transfer from the combustion gases, one
must compute the trajectory of the fragment along the flow streamline, then couple this
information to the equation governing the internal energy of the fragment. An approximate
solution to this problem has been constructed using analytic solutions valid under restricted
conditions. A numerical solution to the set of coupled non-linear differential equations
describing this system would eliminate the inaccuracies of the analytic approach used;
however, in our judgement, the largest uncertainties in these calculations arise from
uncertainties in the description of the drag of a wafer-like particle tumbling in the flow. In
the calculations presented here, this uncertainty is treated by computing bounds on the
thermal history of the fragment arising from bounds on the fragment drag. It could well be
that the chaotic motion of fragments in the interior-ballistic flow would be characterized by
large fluctuations about the mean behavior. If this is the case, placing bounds on the
behavior is the most meaningful approach from an engineering-design perspective.
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The calculations reported here are intended to examine the conditions under which the
fragments are most likely to survive vaporization and, hence, the fragments are assumed to
be imbedded at the outer radius of the case, though different axial locations are considered.
Results of these calculations show that, for this outer-radius position, only very small
fragments, near the limits of unaided visual inspection, will undergo complete vaporization.
Particles imbedded near the cae mouth will achieve the highest temperatures due to the
high gas velocity there; however, these particles will also have the highest forward velocity
at the time of projectile exit and therefore are most likely to be ejected from the barrel.
Fragments imbedded near the breech are the ones most likely to be retained in the chamber
after functioning of the propelling charge and these fragments will present a spectrum of
ignition threats from smaller particles with relatively low internal energy at very high
temperatures (>2000 K) to larger particles with relatively high internal energy but moderate
temperatures (- 500 K). Ignition probabilities for particles up to 1275 K in contact with
combustible-case materials could be measured using the Hot Fragment Conductive Ignition
Test 4,5 (HFCIT) developed at BRL under the LOVA program. The test shows an inverse
relationship between fragment mass and its temperature required to ignite a given energetic
material. The smallest fragment used in the HFCIT is a 130 mg steel ball bearing.
Unpublished records at BRL from approximately the 1981 - 1983 period show that this
"fragment" ignited U.S. combustible-case material at a temperature of 850 K. A wafer shape
likely would require a higher temperature due to its higher surface-to-volume ratio. New
techniques would have to be developed to measure the ignition potential of fragments hotter
than 1275 K.
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APPENDIX 1: Interior Ballistic Calculations for the M829

Results of IBHVG2 calculations 3 for the M829 round, performed at BRL, are shown in Figs.
Al - A6. This is a one-dimensional code that assumes spatially uniform but time-varying
pressures and temperatures in the gun chamber.
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APPENDIX 2: Numerical Parameter Values Used in Computations

Interior Ballistic Conditions3 :

P = 3670 atm mean pressure at combustible-case burnout
T = 2610 K mean temperature at combustible-case burnout
v= 3525 ft/s = 1.07E5 cm/s projectile velocity at case burnout
*= 1100 atm mean pressure at projectile exit
T = 2090 K mean temperature at projectile exit
vp= 5481 ft/s = 1.67E5 cm/s projectile velocity at projectile exit
r,= 2.43 ms from time of case burnout to projectile exit

Gas Properties at Particular Conditions 6:
, = .0056 cal/cm-s-K for JA2 @ 2610 K & 3670 atm
? = .0046 cal/cm-s-K for JA2 @ 2090 K & 1100 atm
u = .0080 g/s-cm for JA2 @ 2610 K & 3670 atm
p = .0068 g/s-cm for JA2 @ 2090 K & 1100 atm
Pg = .427 g/cc for JA2 @ 2610 K & 3670 atm
Pg = .160 g/cc for JA2 @ 2090 K & 1100 atm

Average Gas Properties:
,= .0051 cal/cm-s-K
p = .0074 g/s-cm
,o= 0.294 g/cc

Fragment Properties:

Aluminum:
p = 2.71 g/cc Alloy 1100 [Ref. 7]
c(T) = 0.185 + 1.18E-4 T cal/g-K in range 300 - 950 K [Ref. 8]
c = 0.340 cal/g-K avg. value between To and Tb, extrapolating previous equation
TM = 1220F= 660 C =933 K melt. temp. [Ref. 7]
Tb = 3740 F 2060 C = 2333 K boiling pt. [Ref. 7]
lion = 90 cal/g heat of fusion [Ref. 8]

S'a= 2720 cal/g heat of vaporization [Ref. 8]
C = .65 @ - 1000 K for cleaned surface [Ref. 8]

Steel:
,o = 7.85 g/cc steel, AISI C1020 (hot worked) [Ref. 7]
c = 0.15 cal/g-K avg. value between To and Tf for plain carbon steel 0.2 - 0.6 % C [Ref. 8]
Tm = 2750 F = 1510 C = 1783 K melt. temp. steel [Ref. 7]
T,, = 1400 - 1765 K for plain carbon steel 2.0 - 0.1 % C (Ref. 81
AHfusion = 65 cal/g heat of fusion for iron [Ref. 8]

Constants:
a = 1.356E-12 cal/cm 2-s-K 4 Stefan-Boltzmann const.
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LIST OF SYMBOLS

a radius of sphere of surface area A
c fragment heat capacity (cal/g-K)
d fragment thickness (cm)
h heat transfer coefficient (cal/cm 2-K-s)
s fragment side dimension (assuming square shape)
t time, referenced to beginning of interior-ballistic cycle
te  time of projectile exit from barrel
ti  time of fragment injection into interior-ballistic flow
Vf fragment velocity
Vg velocity of combustion gases
v f velocity of combustion gases at the fragment position
Vp velocity of projectile
x position in chamber/tube relative to breech block
xf location of fragment
Xg location of gas particle (combustion fluid) which passes xi at ti
xi  location of fragment at injection
A fragment surface area
As  fragment sectional area

io n  fragment heat of fusion (cal/g)
kfragment heat of vaporization (cal/g)
Lc  length of chamber
Nu Nusselt number
Pr Prandtl number
Re Reynolds number
T temperature of fragment (K)
Tb fragment boiling point (K)
T temperature of the gas at some specified position in the chamber/bore

temperature of the gas in contact with the fragment
fragment melting point (K)

TO  initial temperature of fragment
V = Ad/2, fragment volume
C fragment emissivity
0 To-T

thermal conductivity of the combustion gases
viscosity of combustion gases

p distance traveled by projectile
P fragment density (g/cc)
Pg density of combustion gases
01 Stefan-Boltzmann constant
r time, reference to instant of fragment injection into flow
re  time of projectile exit
< > average of enclosed variable
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